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Lecture 15

String DACs

Current Steering DACs



R-String DAC 

Note Dual Ladder is used !
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Common-Centroid Anti-Parallel Ladder Layout
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R-String DAC 
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R-String DAC 
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R-String DAC 
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R-String DAC 
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R-String DAC 
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Basic R-String DAC 
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Basic R-String DAC 

• Another Segmented DAC structure

• Can be viewed as a “dither” DAC

• Often n1 is smaller than n2

• Dither can be used in other applications as well
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Basic R-String DAC 

R1=R

 2
n
 R

e
s
is

to
rs

VOUT

IBB

R2=R

RN-2=R

RN-1=R

Rk=R

R

R

R

R

R

R

R

VOUT

VREF

VDD

 2
n
 R

e
s
is

to
rs

for k≥1
k

0k BB k

i 1

V I R


 

Impedance facing VOUT is code dependent

No loading of VREF

Kickback to VREF removed



Current Steering DACs



Current Steering DACs 
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• Current sources usually unary or binary-bundled unary

• Termed bottom-plate switching

• Can eliminate resistors from DAC core

• Op Amp and resistor R can be external

• Can use all same type of switches

• Switch impedance not critical nor is switch matching

• Popular MDAC approach



Current Steering DACs 
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Inherently Insensitive to Nonlinearities in Switches and Resistors

• Termed “top plate switching”

• Thermometer coding (routing challenge!)

• Excellent DNL properties 

• INL may be poor, typically near mid range

• Switch kickback to VREF

• Not suitable for use as MDAC
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Current Steering DACs  

– Inherently Insensitive to Nonlinearities in Switches and Resistors

– Smaller ON resistance and less phase-shift from clock edges

• Termed “bottom plate switching”

• Thermometer coded

• Can be used as MDAC

• Reduced kickback  to VREF

Unary Current Sources
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Current Steering DACs 
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• All single-transistor n-channel devices for switcher

• Unary R:switch cells

• Parasitic capacitances on drain nodes of switches cause transient settling delays

• R+Rsw is nonlinear (so nonlinear relationship between Ik and VREF) but does not 

affect linearity of DAC

• Resistor and switch impedance matching important

• Previous code dependent transient (parasitic capacitances on drains of switches)



Current Steering DACs 
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Phase-margin code dependent so distortion will be introduced if not fully settled

Current drawn from VREF changes with code (settling issues if R0_VREF is not 0)



Current Steering DACs 
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(inherent  Cp compensation)

(Actually static β comp)
(keeps β at approximately ½ for all codes, 

reduces size of compensation capacitor))



Current Steering DACs 
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• Steer current rather than switch current

• Signal swing needs to be just large enough to move 

current from left side to right side



Current Steering DACs 
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CP Compensation Differential Output (switched or steered)

Will β compensation “half” resistance of cells?

Will β compensation double area for cells?

Can Cp and β compensation be used simultaneously?

Is the frequency-dependent β code dependent? 

Is matching of R and compensating R critical?



DFT Characterization Clock

DAC Clock

Spectral Characterization of DACs  (a measure of linearity)

many more samples per DAC clock are often used 
(e.g. 64K samples, 31 periods would be approx 2114 samples/period) 

Is this how we should characterize the spectral performance of a DAC?



Spectral Characterization of DACs  (a measure of linearity)

one mid-period sample per DAC clock period (or maybe even less)

Is this how we should characterize the spectral performance of a DAC?

DFT Characterization Clock

DAC Clock (negative edge triggered)

Assume Nyquist sampling rate is  satisfied



Spectral Characterization of DACs  (a measure of linearity)

one near-end sample per DAC clock period

Is this how we should characterize the spectral performance of a DAC?

Assume Nyquist sampling rate is satisfied

DFT Characterization Clock

DAC Clock (negative edge triggered)



Spectral Characterization of DACs  (a measure of linearity)

Does it make a difference?

Assume Nyquist sampling rate is satisfied

DFT Characterization Clock

DAC Clock (negative edge triggered)

DFT Characterization Clock

DAC Clock
DFT Characterization Clock

DAC Clock (negative edge triggered)

Yes !   But depends on application which is useful



Spectral Characterization of DACs  (a measure of linearity)

Does it make a difference?

Ideal
Complete 

Linear Settling

Incomplete 

Linear Settling

Complete Nonlinear 

Settling

Incomplete 

Nonlinear Settling Complete with glitch Incomplete with 

glitch
Incomplete with big 

glitch

Yes !   But depends on application which is useful

• If entire DAC output is of interest, any nonlinearity including previous code 

dependence will degrade linearity

• If DAC output is simply sampled, only value at sample point is of concern 
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Binary-Weighted Resistor Arrays

• Unary cells bundled to implement binary cells (so no net change in number of cells)

• Need for decoder eliminated !

• DNL may be a major problem

• INL performance about same as thermometer coded if same unit resistors used

• Sizing and layout of switches is critical

• Large total resistance

Observe thermometer coding and binary weighted both offer some major 

advantages and some major limitations

Current Steering DACs 

Current Steering n XOUT

DAC
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Large DNL dominantly occurs at mid-code and due to ALL resistors switching together

Can unary cell bundling be regrouped to reduce DNL



Stay Safe and Stay Healthy !



End of Lecture 15


