EE 505

Lecture 15

String DACs Current Steering DACs

A 10-b 50-MHz CMOS D/A converter with 75- ω buffer

Note Dual Ladder is used !

AND pixel sensor gate32x32 Matrix

MJM **Pelgrom** - Solid-State Circuits, IEEE Journal of, 1990 - ieeexplore.ieee.org Abstracf-A 10-b 50-MHz digital-to-analog (D/A) converter is pre-sented which is based on a dual-ladder resistor string. This approach allows the linearity requirements to be met without the need for selection or trimming. The D/A decoding scheme reduces the glitch energy, ... Cited by 109 Related articles All 3 versions Cite Save

Review from Last Lecture

Common-Centroid Anti-Parallel Ladder Layout

Review from Last Lecture

Common-Centroid Anti-Parallel Ladder Layout

Interconnects Not Shown

Sometimes termed sub-divider, sub-range or dual-string DAC

Review from Last Lecture R-String DAC

Buffered Fine String Interpolator

Review from Last Lecture R-String DAC

Compensated Fine String Interpolator

Basic R-String DAC

Transfer		
	1	

Latching Boolean Signal Can Reduce/Eliminate Logic Transients which Cause Distortion

Dither DAC

For all b_1 and b_2 , $R_U+R_L=R$

- Another Segmented DAC structure
- Can be viewed as a "dither" DAC
- Often n₁ is smaller than n₂
- Dither can be used in other applications as well

Basic R-String DAC

Impedance facing V_{OUT} is code dependent

No loading of V_{REF} Kickback to V_{REF} removed

 $d_{k} = \begin{cases} 1 & \text{if } S_{k} \text{ closed} \\ 0 & \text{if } S_{k} \text{ open} \end{cases}$

$$V_{OUT} = \left[\sum_{I=1}^{k} \mathbf{d}_{i} \mathbf{I}_{i}\right] (-\mathbf{R})$$

- Current sources usually unary or binary-bundled unary
- Termed bottom-plate switching
- Can eliminate resistors from DAC core
- Op Amp and resistor R can be external
- Can use all same type of switches
- Switch impedance not critical nor is switch matching
- Popular MDAC approach

Unary Current Sources n V_{REF} **Binary to Thermometer** S₁ S_2 SN Decoder (all ON) R R R . . . 1 $|_2|$ **I**N-1 VOUT 2 $V_{OUT} = \left[\sum_{i=1}^{N-1} d_i \right] \left(-\frac{V_{REF}}{R}\right)$

Inherently Insensitive to Nonlinearities in Switches and Resistors

- Termed "top plate switching"
- Thermometer coding (routing challenge!)
- Excellent DNL properties
- INL may be poor, typically near mid range
- Switch kickback to V_{REF}
- Not suitable for use as MDAC

Unary Current Sources

- Inherently Insensitive to Nonlinearities in Switches and Resistors
- Smaller ON resistance and less phase-shift from clock edges
 - Termed "bottom plate switching"
 - Thermometer coded
 - Can be used as MDAC
 - Reduced kickback to V_{REF}

- All single-transistor n-channel devices for switcher
- Unary R:switch cells
- Parasitic capacitances on drain nodes of switches cause transient settling delays
- R+Rsw is nonlinear (so nonlinear relationship between I_k and V_{REF}) but does not affect linearity of DAC
- Resistor and switch impedance matching important
- **Previous code dependent transient** (parasitic capacitances on drains of switches)

Phase-margin code dependent so distortion will be introduced if not fully settled Current drawn from V_{REF} changes with code (settling issues if R_{0_VREF} is not 0)

Will β compensation "half" resistance of cells?Will β compensation double area for cells?Is matching of R and compensating R critical?

Can C_p and β compensation be used simultaneously? Is the frequency-dependent β code dependent?

many more samples per DAC clock are often used (e.g. 64K samples, 31 periods would be approx 2114 samples/period)

Is this how we should characterize the spectral performance of a DAC?

one mid-period sample per DAC clock period (or maybe even less)

Assume Nyquist sampling rate is satisfied

Is this how we should characterize the spectral performance of a DAC?

one near-end sample per DAC clock period

Assume Nyquist sampling rate is satisfied

Is this how we should characterize the spectral performance of a DAC?

Assume Nyquist sampling rate is satisfied

Does it make a difference?

Yes ! But depends on application which is useful

Yes ! But depends on application which is useful

- If entire DAC output is of interest, any nonlinearity including previous code dependence will degrade linearity
- If DAC output is simply sampled, only value at sample point is of concern

- Unary cells bundled to implement binary cells (so no net change in number of cells)
- Need for decoder eliminated !
- DNL may be a major problem
- INL performance about same as thermometer coded if same unit resistors used
- Sizing and layout of switches is critical
- Large total resistance

Observe thermometer coding and binary weighted both offer some major advantages and some major limitations

Large DNL dominantly occurs at mid-code and due to ALL resistors switching together Can unary cell bundling be regrouped to reduce DNL

Stay Safe and Stay Healthy !

End of Lecture 15